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GENERALIZATION OF AN INEQUALITY OF BIRNBAUM AND
MARSHALL, WITH APPLICATIONS TO GROWTH RATES FOR

SUBMARTINGALES ,'. -

by Eric V. Slud
Mathematics Department
University of Maryland
College Park, MD. 20742
-J

ABSTRACT: The well-known submartingale maximal inequality of
Birnbaum and Marshall (1961) is generalized to provide upper tail

• 

,.".

inequalities for suprema of processes which are products of a
submartingale by a nonincreasing nonnegative predictable process.
The new inequalities are proved by applying an inequality of

* Lenglart (1977), and are then used to provide best-possible
universal growth-rates for a general submartingale in terms of the 4>h"
predictable compensator of its positive part. Applications of these
growth rates include strong asymptotic upper bounds on solutions to
certain stohastic differential equations, and strong asymptotic
lower bounds on Brownian-motion occupation-times. -
AMS Subject Classification: 60G44, 60F15

Key words and phrases: continuous-time submartingale, predictable
compensator, Lenglart Inequality, strong asymptotic growth rate,
occupation times for Brownian Motion.
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1. Introduction. A large part of the usefulness of submartingales as a
' class of stochastic processes derives from the availability of upper-tail

4- probability inequalities like Doob's (Doob 1953, Theorem 3.4; Liptser
and Shiryaev 1977, vol. 1, Theorem 3.2) for their suprema. Such

inequalities are of great importance in many key calculations of
probability theory, e.g. in establishing asymptotic rates of growth for
proving variot is sorts of strong laws, in checking tightness of sequences of

laws of stochiastic processes, and generally in relating the stochastic
51 ' -
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behavior of the supremum of a process on an interval to its stochastic

behavior at the right endpoint of the interval.

The inequality of Birnbaurn and Marshall (1961, Theorem 5.1)
which we generalize in this paper is a very useful extension of Doob's

inequality because it gives a tail-probability bound for the supremum of a

process which need not itself be a submartingale [so that Doob's maximal

inequality can not be applied directly] but which is a product of a

submartingale by a nonnegative, nonincreasing, right-continuous, adapted
function. The Birnbaum-Marshall inequality, includes the Chebychev,

Kolmogoroff, and Hajek-Renyi inequalities [Loeve 1955, pp. 235, 386;
Petrov 1975, p. 51), which are among the handiest inequalities

concerning the maxima of partial sums of independent summands. The

power of the (generalized) Birnbaum-Marshall inequality can be seen

clearly in the uses to which it will be put in Sections 3 and 4.

The new observation motivating the present work is that the

inequality of Birnbaum and Marshall can be proved and improved by means

of the following inequality due to Lenglart (1977). This inequality of

Lenglart can be regarded as the "master inequality" of the Doob type for

tail probabilities of suprema of processes which can be "dominated" by a

right-continuous increasing predictable process.

Theorem 1.1 [ Lenglart inequality, 1977 If X() is a {F(t) }-adapted

process [ on a probability space (Q,F,P) ] which is a.s. in D[O,o) as a

random function and which satisfies X(O) = 0 a.s. , and if A(' is any

right-continuous nondecreasing {F(t)}-predictable process such that

(i) A(O) 0, and (ii) for any bounded stopping-time r, E X(r) E E A(r) , ""

then for arbitrary positive constants c and d and every essentially

bounded stopping--time r

,".-"
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P{ sup X(s) >c} c'E{A(r)^d}+P{A(r) d} .

Note: Here and throughout the paper, if I = [a,b] or [a,b) is a .p
subinterval of [O,co) ,then D(I) denotes the collection of right-continuous '

real-valued functions on I which have limits from the left at all interi~or '..-.""

points of I . In addition, the notation x Ay denotes minjx,y} . Finally,....

we assume throughout the paper that the nondecreasing family {F(t) : t0}-,

of sub-c-fields of F on 9 is right-continuous in the sense that

F(t+) = ns F(s) = F(t)

To show the idea of our inequality without technicalities related to .-: i

continuous time, we first re-prove the inequality of Chow (1960) which is

the discrete-time specialization of our Theorem 2. 1. :'

Proposition 1.2 [ Chow, 1960 ]: Let (Yk }kO with Yo =0 be any

{ Fk )-adapted sequence of integrable r.v.'s on a fixed probability space..,;"

(2 , F, P) , where { Fk }k>O is an increasing family of sub-C-fields P--,

of F . In addition, let {ak}k>0 with a0=O be any a.s. nonincreasing
k*,2!0"%

positive sequence of random variables with each ak measurable with

respect to Fki " Then

P{ sup Yk ak 2 1} ! E : ak (Bk- k),
k +..

k

where {Bk} is defined by Bk X E{Y+-
j=i

3
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Proof. We will apply a discrete-time specialization of Theorem 1. 1

(which is very easy to prove directly in the discrete-time setting) to the

sequence Xk a (where x+ maxx,0 ) and the dominating
k kt

sequence A - a- B. ) " We first calculate for any bounded
Ak =1 (B3 i

stopping-time r N

N-i + +
E i0 (E a)Er A(i+i) r Y1 r -"

N-I
-< E I [r>i] ai ((i+1)- Y1)i=0

N-I r
7-~ ElI,,, ai (B~+ - B) .: a iI(B Bj~ E A

i= 0 [Bi+j= I j j-i "._.1. .

Regarding the processes Xt and At as constant on each time-interval

t E [k,k+i), we see that these processes satisfy the hypotheses of Theorem

1. 1. Therefore

+_ N
P{ sup Yk ak !c} c E aj1 (B Bi.1 ).

k j=1
Finally, let N--w and apply the Monotone Convergence Theorem to

complete the proof. [,

The plan of the paper is as follows. Section 2 contains the

statement and proof of the generalized inequality of the title. Section 3

applies it to give an upper-class type result for any submartingale in

terms of the predictable com;, >nsaior of its positive part as the time- k

parameter goes to w . Phi.-. ez:.,irg gowd-estimate is shown by an

4
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example to be best-possible. Finally, Section 4 contains two quite

different applications of the growth-estimate, one to a class of stochastic.Z

differential equations and one to the asymptotics of Brownian-motion

occupation-times for complicated subsets of the real line.

2. Generalized Birnbaum-Marshall Inequality.

Theorem 2.1. Suppose that X(') is a locally square-integrable

{F(t): t>O}-submartingale which is a.s. in D[O,T) [where T co ] and for

which X(O) = 0 a.s. Suppose also that h(') is a predictable {F(t)}- I.>..

adapted random function which is a.s. nonincreasing and nonnegative.

Then

Pr sup X(t)'-h(t+) i E h(s) dA+(s)
O~gs<T -.-.

where A+(' is the predictable compensator of X (H = max{ X+ ( H 0. }
+I

In particular, if h(') is nonrandom , then " 77J;

P{ sup X(t)'h(t+) 2t } h(s) dp(s)
Ogs<T .-

where p(s) E X (s) for s E [O,T].

Proof. Since max{x,0} is a nondecreasing convex function of x, X+("

is a (locally square-integrable) {F(t)}-submartingale. The general Doob-

Meyer Decomposition theorem implies the existence of the compensator

A+(-). Let C > 0 be arbitrary, and let { rn } be a sequence of stopping
2 A

times increasing a.s. to T such that E X (rn) < co for each n. Our

main task is to apply Lenglart's inequality to the right-continuous process

(s) X+ (s"tn) min{ C , h+(St) }, 0 -sK T ,
n+ n

5-.



for each n [where we make the notational definition h+(s) = h(s+) ]
along with the predictable process

mO n ain{ h(s), C }dA+()

Clearly Y(' is a.s. an element of D[O,T) satisfying Y(O) = 0,

and A(' is a.s. right-continuous with A(0) 0 . We shall verify for

all stopping-times r < T ,that

E Y(r) -< E A(r) (2.1)

This can be done directly using results from stochastic calculus. Indeed,

if we denote h(') m= min { h(') C } and if we define M(' Mn() to
be the square-integrable martingale X + ( ' n) - A+ ('^n) then Theorem .

(2.53) (b) of Jacod (1979) implies that
+ -,.- -- "

X~ (r) hc(t") X (s-) dhc(s) + A "'s)"(s)

f n X+(s) dhc(s) + f n hC(s) dM(s) + tn hC(s) dA+(s)

0 0O 0O,--.

[It is worth remarking here that the result we have used from stochastic

calculus amounts to nothing more than integration by parts in case h(') is

left-continuous.] In the last expression, the first integral is a.s. - 0

because h(') is nonincreasing, and the second integral is a square-

integrable martingale. Therefore, replacing t by an arbitrary stopping-

time r , taking expectations, and relying on the Optional Sampling

Theorem to ensure that the expectation of the middle integral-term is 0 ,

we find

E Y(r) < E{ X+ (nr )hc(rr) E f(s) 0 , ')

_ _ ... ,-,,..-

n n-::-%
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I as was to be shown.

Now Lenglart's Inequality applied to the processes Y(') and A(-)
for fixed n and C says in particular [for c= I and d=oD in
Theorem i. I ":

P{ sup X+ (s) h (s+) > 1 E < E he(s) dA+(s) (2.2)

O.9s<rn"-.:

The proof of the Theorem is completed by letting n--+o and C--+o and

applying the Monotone Convergence Theorem to both sides of (2.2).

If h(') is nonrandom, then E A(T) is by the Fubini-Tonelli

Theorem equal to h(s) dp(s) , and the Theorem is proved. E.

3. Universal rate-of-growth estimates for submartingales. It is well
2

known that if the submartingale X(') M (' is the square of a zero-
mean martingale with almost-surely continuous paths, then the Law of the

Iterated Logarithm for Brownian Motion has the consequence that a.s. on

the event <M> (co) co ,

lim sup X(t) / (2 A(t) log log A(t) } 1 (3.0)

where the compensator A(-) of X(') is the same as the predictable

variance <M>(') of M(') [ See Durrett 1984, p. 77, where references
are also given to analogous results for squares of discontinuous
martingales. ] On the other hand, there are no corresponding results
known to the author on strong rates of growth in terms of A(-) for

general submartingales X(') . Otu main app!- ,on (,f Th,.-ern 2. 1 is to

prove such a result.

7 .



Theorem 3.1. Suppose that X(t) for t > 0 is a locally square-

integrable {Ft}-submartingale with X(0)=0 and X(' E D[0,T] a.s. for

each T < co . Let A+(-) denote the predictable compensator of X+(") ;

define for each m > 0 , r(m) F inf{t>0 : A (t) > m}, and let q(t) be any .

nonrandom positive increasing function such that for some m> 0 .

q[(A+(u))] dA+(u) < O 3.1)

Then on the event [A (T) -- o+ as T-+o ] , almost surely

lim sup X(T) / q(A+(T)) = 0

Proof. Let q(') be as in the hypotheses of the Theorem. Then the random

function h(t) = 1/q(A+(max{r(2),t})) is predictable, right-continuous,

and a.s. nonincreasing . Therefore Theorem 2.1 applied to

X (max{r(m),'})-X+(r(m)) , m-2 , says that

P sup { [X (s)-X (r(m))] h(s) : r(m) s} s c <

c E h(s) dA+(s) = c E [q(A+(s))] dA+ (s)r~m) - ),. --..

Now fix a nonrandom sequence { m(k) : k=l,2...} of real numbers

which increases to o so rapidly that
COP

E [q(A (u))] dA(u) < xO
k=1 r mM

[This can be done because the finiteness of the expression in (3. 1) implies
that the same expression must converge to 0 as m-- . The

* U. ,%

-% ,
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inequality of the previous paragraph together with the Borel-Cantelli

, Lemma imply for each c > 0 [ since the right-hand sides of the inequality

are summable in k when m is replaced by m(k) ] that

Pf sup{(X+(s)-X+(r(m(k))))h(s) : t(m(k)) > s } > c i.o. in k } 0

It follows that a.s. on the event [ A (T)tcx as Tfx ] for all k >

some k(o,c ,.

sup{ [X (s)-X (r(m(k)))]h(s) : s!r(m) } < c

Thus for all k - ko(co,c) [for a set of co with probability I]

sup X (s)'h(s) -X (r(m(k))'h(r(m(k)) + c .
r(m(k))_s

In other words, we have proved that a.s. when A+(' increases to co

X +(s) = O(q(A+(s))) as s-+c , i.e. lir sup X(s)/q(A+(s)) < o.
S-- c0

To see that the last almost-sure im sup is in fact 0 , it suffices to

: remark [as is standard in the theory of integral tests for stochastic r2 c s

of growth] that whenever assumption (3.1) holds for a nonrandom

nondecreasing function q('), it must also hold for another such function

Q(' for which q(t)/Q(t) increases sufficiently slowly to co as t -+CO
Then the conclusion that X (s) = O( Q(A+(s)) ) as s and A (s) -O

immediately implies that

nim sup X (s)/q(A+ (s)) 0 a.s. on [A+(x)-c] .CD
, ~~S-t O..-

The hypothesis (3.1) takes a much simpler form in case the

compensator A+() is either continuous or has jumps which are st'c-i,'

V...

n..o o.-..•, .°.. -°- -,- -.-. . ° . ,°. . °. . . , .. - - - - % ° • - . . % -.. .. . . ....... °• • .. . . .
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controlled in magnitude. As Example 3.3 will show, bounding the sizes of

jumps of A+(' can be much less restrictive than bounding the jumps of

X(-) itself. In what follows, the jump f(t)-f(t-) at t of a function f in

D([0,T]) is denoted Af(t).

Lemma 3.2. If the submartingale X(') is such that the predictable ".4
+compensator A+ of X satisfies sup AA+(t)-< C a.s. for a finite .

t

constant C, then the hypothesis (3. 1) of Theorem 3. 1 on the

nondecreasing function q(') is equivalent to the condition

[q(x)] dx < o for some finite m > 0

Proof. The hypothesis implies that x < A+(r(x)) x+C for all x, so

that A+(r(m+2(k+i)C)- A+ (r(m+2kC)) lies between C and 3C, and.".

r(m+2 (k+ 1 )C)
q (CA+(u)) ]dA+ (u) 2 [q(A+ (u))] dA+(u).'.-",

r~m) k=0 (m+2kC)

lies between

A (r(m+2(k+I)C)) A (r(m+2(k+I)C))
[qlx+3C)-d , D 3dx

k= T A +(r(m+2kC) k=C A+(r(m+2kC)) 2 -2x)

Thus
- -r< 3dx

* [q(x)] dx < [q(A+(u))] dA+(u) J 2 q(x)

m+4C r(m) m

and (3. 1) is evidently equivalent to the integrability of I /q on [m,o0) for

sufficiently large m . [

10
: t.*4, ** *
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Example 3.3. Define a right-continuous nonnegative submartingale X(t)

to be constant on each interval [jj+l) for j=O,1,2,... , with X(O) =_ 0,

and
(k-i)/k if X(j)=k-i>O

P{ X(j+1) = k j (X(s): s_<j) } = (n+I) if X(j)=n>O, k=O

I if X(j)=0 , k=i °_,

Then E{ X(j+i)-X(j) I (X(s):sgj) = [x(j)=O] , so that

A+ (t) = 1 I We note in passing that the jumps of

. H) have size at most i , so that Lemma 3.2 applies, while there is no
upper bound on the sizes of jumps of X(')

Now let the sequence {r.} of times when X() returns to 0 be

defined for j 2! 0 by t. inf{ k2!0: A+(k) = j}. Then it is easy to see

that since X() is a Markov process, the sequence of waiting-times 4

Ti = r. - - for i->1 are independent and identically distributed
• _1 i-

random variables. An easy calculation shows that P{ T,-> n } = n for
n 2 I . Since T. is the largest value taken on by X(' between times

ri_- and r , for any nondecreasing strictly positive function q(')

lim sup X(s)/q(A+(s)) = lim sup Tk / q(k) w..-

s-+o k---

But for any constant b > 0, by the Borel-Cantelli Lemmas

I if n [bq(n)] o
SP{ T t b q(k) i.o. (k)}= (3.2)k0 if 2n[ b q(n) F] < o

where [x] again denotes the greatest integer - x, and the summations in

(3.2) are taken over all positive integers n for which b'q(n) t I.

..



Since b is arbitrary, and since the convergence or divergence of the
sums in (3.2) is equivalent to the convergence or divergence of the

integral -'
J= q(x) dx

we conclude that in this example , almost surely
CD if J O D %o %-..

lir sup X(s) / q(A+(s)) =
s-+C{ 0 if J< CO

Taking Corollary 3.2 into account, we note that Theorem 3.1 says in this
Example precisely that the im sup is zero a.s. if J is finite.

Theorem 3.1 shows that X(s) = o( q(A+(s) ) a.s. Thus our example

shows that the rate-of-growth given by the Theorem is best-possible in the
sense of identifying those functions q for which X(s) = o( q(A+(s)) )

a.s. on [ A+ (c) = W. A

4. Applications to SDE's and Brownian 2qt tion-times.

4.1 Growth of solutions to stochastic differential equations. Consider

first a solution X(t) to the stochastic differential equation

dX(t) = g(t) dt + b(t) dW(t) , X(0) = i

for (possibly random, but progressively measurable and nonanticipating)
functions b and g which are everywhere nonnegative. Then X(') is a
local submartingale which, under mild conditions on g and b , is a.s.

path-continuous. Such a model arises naturally in Inventory Theory or in

Economics where g(') represents an income rate, measured in constant

dol.lars (corrected for inflation over time from time-origin 0 ), and where

b(t) dW(t) represents the current fortune at time t multiplied by the

12
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instantaneous interest rate minus the instantaneous inflation rate.

Theorem 3.1 allows us to bound the order-of-magnitude of the .__

nonnegative long-term fortune X(t''n) measured until the time =n

inf { s>O : X(s) -< 0 } of "bankruptcy" in terms of the compensator
r n  , ..

A(t) g (s) ds

for X('^n), on the event [ n=o, A(co)=co ] where A(-) increases

a.s. to c without reaching 0 . The bound given by Theorem 3.1 is

rather different from, and should be compared with, the iterated

logarithm bound (3.0) on the submartingale

X(t) - g(s) ds in terms of b (s) ds

4.2 Total occupation times for Brownian Motion. Now let W(t) be a

standard real-valued Brownian motion process, and let B be any

(possibly unbounded) Lebesgue-measurable subset of the line. Define the

real-valued, twice-differentiable, nonnegative, increasing convex function

g(x) through the equation

g"x) = 2 IB(x) ,xE R; g(0) =0 (4.1)
B

Then g(W(t)) is by Ito's Lemma a submartingale with compensator

IB(Ws) ds -Lt(B) [with respect to cr(W : 0<u-<t) ] . This compensator

is otherwise known as the total occupation time for the Wiener process
* W(') and the set B up to time t.

Theorem 3.1 implies therefore that

lira sup g(W(t))/q (Lt(B)) = 0 a.s.
,',~~ t-+c0'0"'

"3 13 .

,.-"3
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for any positive increasing function q such that i/q is Lebesgue A

integrable on [O,co). In particular, since g is an increasing function for __-.

nonnegative values of its argument, and since the law of iterated
logarithm (3.0) bounds the positive values of W(t) for all sufficiently

large t, we conclude

lirn if q(Lt(B)) / g( [2t log log t]) co a.s. (4.2)
t--+CO."..-" ..-.. .p,

When B is a bounded set, this kind of result should, in a spirit like that

of Donsker and Varadhan (1977, p. 708, remarks following formula (1.4))

be regarded as a Strong Law constraining the possible growth of X(t) as

t-+co. [The reasoning is that asymptotic bounds below for Lt (B)

indirectly imply that X(t) cannot grow too quickly.] In the cases where

B has finite total Lebesgue measure A(B) , it is easy to check that the

function g(x) defined by (4. ) behaves asymptotically for large x like

X(B) x , so that (4.2) says (for strictly increasing q) that .

Lt(B) /q ([2t log log t) co a.s. as t -+-.
°..*.

The laws of iterated logarithm of Kesten (1965) and Donsker and
Varadhan (1977) for local times imply [ for B with X(B) < co] that

L(B) = 0 (t loglogt]) a.s. as t-+o..

Thus for B with finite total Lebesgue measure, our new result (4.2)

complements known iterated logarithm results. -
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